Home

læber snave Måge high resistance lithium sulphur battery Held og lykke Turbine handikap

Designing high-energy lithium–sulfur batteries - Chemical Society Reviews  (RSC Publishing) DOI:10.1039/C5CS00410A
Designing high-energy lithium–sulfur batteries - Chemical Society Reviews (RSC Publishing) DOI:10.1039/C5CS00410A

Solvent selection criteria for temperature-resilient lithium–sulfur  batteries | PNAS
Solvent selection criteria for temperature-resilient lithium–sulfur batteries | PNAS

Novel Li-S cathode design significantly improves performance of  next-generation battery - Green Car Congress
Novel Li-S cathode design significantly improves performance of next-generation battery - Green Car Congress

Challenges and Prospects of Lithium–Sulfur Batteries | Accounts of Chemical  Research
Challenges and Prospects of Lithium–Sulfur Batteries | Accounts of Chemical Research

Flame retardant high-power Li-S flexible batteries enabled by  bio-macromolecular binder integrating conformal fractions | Nature  Communications
Flame retardant high-power Li-S flexible batteries enabled by bio-macromolecular binder integrating conformal fractions | Nature Communications

Charge-discharge curves of lithium sulfur batteries with the cathode... |  Download Scientific Diagram
Charge-discharge curves of lithium sulfur batteries with the cathode... | Download Scientific Diagram

High-performance lithium sulfur batteries enabled by a synergy between  sulfur and carbon nanotubes - ScienceDirect
High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes - ScienceDirect

Frontiers | Progress and Prospect of Organic Electrocatalysts in Lithium−Sulfur  Batteries
Frontiers | Progress and Prospect of Organic Electrocatalysts in Lithium−Sulfur Batteries

Strategies toward High-Loading Lithium–Sulfur Batteries | ACS Energy Letters
Strategies toward High-Loading Lithium–Sulfur Batteries | ACS Energy Letters

Long-life lithium-sulfur batteries with high areal capacity based on  coaxial CNTs@TiN-TiO2 sponge | Nature Communications
Long-life lithium-sulfur batteries with high areal capacity based on coaxial CNTs@TiN-TiO2 sponge | Nature Communications

Batteries | Free Full-Text | High-Performance Lithium Sulfur Batteries  Based on Multidimensional Graphene-CNT-Nanosulfur Hybrid Cathodes
Batteries | Free Full-Text | High-Performance Lithium Sulfur Batteries Based on Multidimensional Graphene-CNT-Nanosulfur Hybrid Cathodes

Reducing polarization of lithium-sulfur batteries via ZnS/reduced graphene  oxide accelerated lithium polysulfide conversion - ScienceDirect
Reducing polarization of lithium-sulfur batteries via ZnS/reduced graphene oxide accelerated lithium polysulfide conversion - ScienceDirect

A High Energy Lithium‐Sulfur Battery with Ultrahigh‐Loading Lithium  Polysulfide Cathode and its Failure Mechanism - Qie - 2016 - Advanced  Energy Materials - Wiley Online Library
A High Energy Lithium‐Sulfur Battery with Ultrahigh‐Loading Lithium Polysulfide Cathode and its Failure Mechanism - Qie - 2016 - Advanced Energy Materials - Wiley Online Library

Electrolyte Issues in Lithium–Sulfur Batteries: Development, Prospect, and  Challenges | Energy & Fuels
Electrolyte Issues in Lithium–Sulfur Batteries: Development, Prospect, and Challenges | Energy & Fuels

A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous  catalytic cathode with double-end binding sites | Nature Nanotechnology
A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites | Nature Nanotechnology

Realizing high-performance lithium-sulfur batteries via rational design and  engineering strategies - ScienceDirect
Realizing high-performance lithium-sulfur batteries via rational design and engineering strategies - ScienceDirect

Hollow Ni3Se4 with High Tap Density as a Carbon-Free Sulfur Immobilizer to  Realize High Volumetric and Gravimetric Capacity for Lithium–Sulfur  Batteries | ACS Applied Materials & Interfaces
Hollow Ni3Se4 with High Tap Density as a Carbon-Free Sulfur Immobilizer to Realize High Volumetric and Gravimetric Capacity for Lithium–Sulfur Batteries | ACS Applied Materials & Interfaces

A room-temperature sodium–sulfur battery with high capacity and stable  cycling performance | Nature Communications
A room-temperature sodium–sulfur battery with high capacity and stable cycling performance | Nature Communications

Frontiers | Recent Progress in Quasi/All-Solid-State Electrolytes for  Lithium–Sulfur Batteries
Frontiers | Recent Progress in Quasi/All-Solid-State Electrolytes for Lithium–Sulfur Batteries

A Review of Solid-State Lithium–Sulfur Battery: Ion Transport and  Polysulfide Chemistry | Energy & Fuels
A Review of Solid-State Lithium–Sulfur Battery: Ion Transport and Polysulfide Chemistry | Energy & Fuels

A high-energy sulfur cathode in carbonate electrolyte by eliminating  polysulfides via solid-phase lithium-sulfur transformation | Nature  Communications
A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation | Nature Communications

Comprehensive Design of the High-Sulfur-Loading Li–S Battery Based on MXene  Nanosheets | SpringerLink
Comprehensive Design of the High-Sulfur-Loading Li–S Battery Based on MXene Nanosheets | SpringerLink

Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to  Practical Application | SpringerLink
Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application | SpringerLink

Development of high-energy non-aqueous lithium-sulfur batteries via  redox-active interlayer strategy | Nature Communications
Development of high-energy non-aqueous lithium-sulfur batteries via redox-active interlayer strategy | Nature Communications

A Li2S-based all-solid-state battery with high energy and superior safety |  Science Advances
A Li2S-based all-solid-state battery with high energy and superior safety | Science Advances

Flexible and stable high-energy lithium-sulfur full batteries with only  100% oversized lithium | Nature Communications
Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium | Nature Communications

A review on the status and challenges of electrocatalysts in lithium-sulfur  batteries - ScienceDirect
A review on the status and challenges of electrocatalysts in lithium-sulfur batteries - ScienceDirect